

Real-World Avalanche Testing Of Single-Die, Wafers, Hybrid Modules, and Packaged Devices

Steven T. Clauter, Test Equipment Design Engineer Integrated Technology Corporation

. . . .

Taichi Ukai, President and CEO
Tiatech, Incorporated
ukai@tiatech.com

www.tiatech.com

Agenda

- Background of Avalanche Testing
- Package Avalanche Testing
- Die and Wafer Testing
- Protection of Probe Tips
- Die and Wafer Full Power Testing

Avalanche Testing Background

- MOSFET Avalanche Testing 1985
- Initially Manufacturers Disagreed
- Now Manufacturers Provide Avalanche Energy Ratings
- What Is Avalanche Mode?
- What Is Ruggedness?
- Avalanche Test Method Standards
 - MIL-STD-750 METHOD 3470.2
 - JEDEC STANDARD JESD24-5

Ideal Avalanche Test Circuit

Decoupled VD UIS Method

$$E_{AVA} = \frac{1}{2}L \times I_D^2$$

Good Avalanche Test Waveform

T1 and T2 Times
Calculated From:
Inductance Value
I Peak
Rated Drain Voltage

Shows DUT Passing Avalanche Based On Measured T2 Time

Failed Avalanche Test Waveform

Shows DUT Failing Avalanche Based On Measured T2 Time

Real-World Avalanche Circuit

$$R_{Loss} > 0$$

$$T_1 = \frac{L}{R_{Loss}} LN \left(1 - \frac{R_{Loss} * I_P}{V_{ON}} \right)$$

$$T_2 = \frac{L}{R_{loss}} LN \left(1 - \frac{V_{ON}}{R_{loss} * I_P + V_{ON}} \right)$$

$$V_{\text{ON}} = V_{\text{Loss}} + V_{\text{DUT ON}}$$

$$m V_{OFF} =
m V_{Loss} +
m V_{DUT\,OFF}$$

$$V_{ ext{DUT OFF}} = V_{ ext{Avalanche}}$$

Real-World With Losses Waveform

Note the "Rounded Current" Waveshape

Losses Increase T1 Time

Losses Decrease T2 Time

Package Level Avalanche Testing

... now to extend this same testing to Wafer and Die

High Power Testing on Probe Cards

Wafer and Die High Power Avalanche Testing

Realities:

- Probe Cards
- Probe Tips
- Testing Environment

Benefits:

- Lower Cost Failures
- Faster Process Analysis
- Higher Net Yield
- Comparison with Packaged Parts

Typical Die/Chip Carrier & Probe Card

Enlarged Carrier View

Probe Card with
5 mil tip dia probes
and Pogo Pins

200 Amp, 1000V Probe Card

Probe Tips on Aluminum Pad

Probe Tip Protection Technique

$$It = 20 \text{ Amps}$$

Imax = 5A/Probe, 5 mil dia

$$I_{P1} = 5A, V_{P1} = 0.5V$$

$$P_{P1} = 2.5W$$

Manage Probe Current & Voltage to keep POWER Dissipation from harming **Probes**

$$I_{P4} = 5A, V_{P4} = 7.5V$$

$$P_{P4} = 37.5W!!!!$$
TOO HIGH

Probe Simulation Circuit

Probe Tip Currents

Probe Tip POWER

0 0 0

Power Limiter Showing Probe Tip Protection Concept

Production Avalanche WPS

Simple Avalanche Connection Diagram

Realized Avalanche Waveforms

Avalanche Waveform – PASS

Collector Current

Collector Voltage

Gate Voltage

Sense Emitter

Avalanche Waveform - FAILURE

Collector Current

Collector Voltage

Gate Voltage

Sense Emitter

Advanced Chip or Die Level Avalanche Testing Connections

WPS Current Limiter Overview

- Patent-Pending Power Limiter Circuit
- Set for 5 Amps per Probe and uses Standard Probe Card Technology
- Limits Maximum Current In The BEST Probe
- Limits Maximum Power in the WORST Probe
- Voltage Across Contact Resistance Monitored for Complete Protection

Summary

- Allows for Standard Avalanche Test Methods to be used FULL Power
- Expandable to High Power and High Current
 Parts and Tests
- Power MOSFETs, IGBTs, Diodes, Transzorbs
- Avalanche, RB_{SOA}, V_{DSON}, R_{DSON}, V_{CEON}, V_{F-SD}(body diode)
- All performed with the SAME equipment at the SAME Probe Station
- Allows Correlation with Packaged Parts

References

Tim McDonald, Marco Soldano, Anthony Murry, Teodor Avram "Power MOSFET Avalanche Design Guidelines" IR Application Note AN-1006 Kenneth Dierberger "Understanding The Difference" Between Standard MOSFETs and Avalanche Energy Rated MOSFETs" Advanced Power Technology **Application Note** "Power MOSFET Single-Shot And Repetitive Avalanche Ruggedness Rating" Philips Semiconductor Application Note AN10273-1 Warren Schultz "Power Transistor Safe Operating Area" ON Semiconductor Application Note AN875/D Michael Bairanzade "Understanding Power Transistors Breakdown Parameters" ON Semiconductor Application Note AN1628/D

